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ABSTRACT
Graph contrastive representation learning aims to learn discrimi-
native node representations by contrasting positive and negative
samples. It helps models learn more generalized representations
to achieve better performances on downstream tasks, which has
aroused increasing research interest in recent years. Simultane-
ously, signed graphs consisting of both positive and negative links
have become ubiquitous with the growing popularity of social me-
dia. However, existing works on graph contrastive representation
learning are only proposed for unsigned graphs (containing only
positive links) and it remains unexplored how they could be applied
to signed graphs due to the distinct semantics and complex rela-
tions between positive and negative links. Therefore we propose a
novel Signed Graph Contrastive Learning model (SGCL) to bridge
this gap, which to the best of our knowledge is the first research
to employ graph contrastive representation learning on signed
graphs. Concretely, we design two types of graph augmentations
specific to signed graphs based on a significant signed social theory,
i.e., balance theory. Besides, inter-view and intra-view contrastive
learning are proposed to learn discriminative node representations
from perspectives of graph augmentations and signed structures re-
spectively. Experimental results demonstrate the superiority of the
proposed model over state-of-the-art methods on both real-world
social datasets and online game datasets.

CCS CONCEPTS
• Computing methodologies→ Learning latent representa-
tions; • Mathematics of computing → Graph algorithms.
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1 INTRODUCTION
With the increasing popularity of social media, various interac-
tions between people are generated and recorded in social graphs
[2, 20, 36]. While most social interactions suggest positive rela-
tionships such as like, trust and friend, there also exist negative
interactions reflecting hate, distrust, etc. In general, graphs that
have both positive and negative interactions/links are referred to as
signed graphs [5, 27, 35]. As an illustration, Fig. 1 depicts a signed
graph in the scenario of online games, where the interactions of Like
and Gift indicate positive links and the interactions of Report imply
negative links between users. In recent years, some researchers
investigate network representation on signed graphs [17, 28, 42],
which aims at learning low-dimensional representations of nodes
and further serving for downstream network analysis tasks [26, 45].
However, there always exists interaction noise in real-world signed
graphs, yet methods for signed network representation leverage
the noisy interactions to optimize models, resulting in the over-
fitting problem on the training data as well as the performance
degradation on downstream tasks.

Fortunately, graph contrastive representation learning [14, 22,
25] can help solve this problem, which defines a contrastive objec-
tive on the graph to assist learning more robust and generalized
representations for downstream tasks and has aroused a growing
interest in recent years. However, existing works of graph con-
trastive learning are only proposed for unsigned graphs (consisting
of only positive links) and it remains unexplored how they could be
applied to signed graphs due to the distinct semantics and complex
relations between positive and negative links.

To solve the above problems, we exploit contrastive learning
with graph augmentations [47, 52] for signed graphs to help the
model learn more robust and generalized representations. Notably,
network representation methods designed for signed graphs con-
strain each node closer to its “friends” (or neighbors connected
with positive links) and farther from its “enemies” (or neighbors
connected with negative links), which is the same as the core idea
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Figure 1: An illustrative example of signed graph in the sce-
nario of online games, where the red lines represent positive
interactions/links and the blue lines represent negative in-
teractions/links.

of contrastive learning that aims at grouping positive pairs close
and pushing negative pairs away.

Specifically, there exist the following challenges when designing
signed graph contrastive learning:

• Existing graph contrastive learning methods perform graph
augmentations by node dropping, attribute masking, etc,
which are mainly designed for unsigned graphs while ig-
noring the diverse semantics between positive and negative
links in signed graphs. Therefore, the first challenge is how to
redesign graph augmentations specifically for signed graphs,
which take the complex relations between positive and neg-
ative links into consideration.

• Most graph contrastive learning methods employ graph aug-
mentations to generate different graph views and contrast
augmented graphs to retain the information consistency be-
tween them, which make augmented representations of the
same node to be close while pushing away representations
of different nodes. However, signed graph contrastive learn-
ing also requires another contrast on signed structures to
make nodes close to neighbors connected with positive links
and far from those with negative links. Hence, the second
challenge is how to combine the two forms of contrasts into
a single coherent contrastive learning model.

To address the aforementioned challenges, we propose a novel
Signed Graph Contrastive Learning model (SGCL) to explore con-
trastive representation learning on signed graphs. Specifically, SGCL
designs and performs two types of graph augmentations to help
capture the invariant representations based on a significant signed
social theory, i.e. balance theory [1, 9]. Then, two graph neural
networks [44, 50] with attention mechanism [37] are adopted on
the augmented graphs to learn representations from “friends” and
“enemies” for each node respectively, followed by the inter-view
and intra-view contrastive learning to combine the contrasts of
augmented graphs and signed structures. Ultimately, supervised
labels and the combined contrastive objective are integrated to train
SGCL jointly.

To sum up, the major contributions of this paper are as follows:

• We design two types of graph augmentations specifically
for signed graphs, which help capture the invariant node
representations based on the balance theory.

• We propose a signed graph contrastive learning model SGCL,
which combines the contrasts of augmented graphs and
signed structures coherently. To the best of our knowledge,
this is the first research on signed graph contrastive repre-
sentation learning.

• We conduct extensive experiments on the real-world so-
cial datasets and online game datasets to comprehensively
demonstrate the effectiveness of the proposed SGCL model.

The rest of the paper is organized as follows. In Section 2, we
briefly review related works of graph contrastive learning and
signed network representation. In Section 3, we formulate the prob-
lem of signed network representation and introduce a significant
signed social theory, i.e., balance theory. Then, our proposed SGCL
model is presented detailedly in Section 4, followed by extensive
experiments to evaluate the effectiveness of SGCL compared with
state-of-the-art methods in Section 5. Finally, we conclude the paper
in Section 6.

2 RELATEDWORK
2.1 Graph Contrastive Learning
Contrastive learning, whose main idea is to learn discriminative
representations by contrasting positive and negative samples, has
gained increasing popularity in visual representation learning [14,
22]. Inspired by the promising success of contrastive learning in
images, researchers manage to extend contrastive learning to graph-
structured data [31, 34, 46] in recent years, namely graph contrastive
representation learning, which can help models learn more invari-
ant and generalized node representations. For instance, DGI [39]
incorporates graph neural networks and contrastive learning, and
generates node representations by maximizing mutual informa-
tion between global graph representations and local node repre-
sentations. GraphCL [47] develops a graph contrastive learning
framework that leverages various types of graph augmentations to
capture the invariant node representations. GRACE [51] generates
graph views by two proposed graph augmentations and maximizes
the agreement of node representations in different views. MVGRL
[8] introduces a self-supervised approach by maximizing mutual
information between node representations from two structural
graph views including first-order neighbors and a graph diffusion.
Nevertheless, existing researches on graph contrastive learning are
only designed for unsigned graphs, which can not distinguish the
diverse properties of positive and negative links and fail to take
advantage of additional information from negative links, thus not
applicable for signed graphs.

2.2 Signed Network Representation
Due to the popularity of social media, signed graphs have become
ubiquitous and network representation on signed graphs has at-
tracted increasing attention in data mining and machine learning
[3, 4, 40]. As the first research on signed network representation,
SNE [48] utilizes the log-bilinear model and representations of all
nodes along a given path to capture the edge sign information.
Later, SiNE [43] is proposed, which designs an objective function
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Figure 2: Illustrations of balanced and unbalanced cycles. The
two cycles on the left are balanced cycles since there exist an
even number of negative links. The two cycles on the right
are unbalanced cycles since the number of negative links is
odd.

based on the balance theory and employs deep learning to optimize
the objective function. In recent years, with the popularity and suc-
cess of graph neural networks, researchers begin to exploit graph
neural networks for signed network representation. For example,
SGCN [6] and SNEA [24] incorporate the balance theory into the
aggregation processes of graph convolutional networks and graph
attention networks respectively to integrate positive and negative
links. SDGNN [12] proposes a framework guided by two fundamen-
tal sociological theories, i.e. balance theory and status theory, which
utilizes graph attention networks to encode signed graphs and re-
constructs link signs, link directions and signed directed triangles
to learn node representations. However, there exists a large num-
ber of interactions between users in the real-world signed graphs,
where some interactions may be noisy and spurious. The afore-
mentioned methods are optimized by the noisy interactions in the
original graphs, which are vulnerable to the attacks of noisy links
and thus cause over-fitting on the training data as well as the perfor-
mance degradation on downstream tasks. Therefore, more robust
node representations are expected for signed graphs, and we adopt
contrastive learning to generate more invariant and generalized
representations in this paper.

3 PRELIMINARY
For the convenience of presentation, we first introduce some defi-
nitions and main notations used in this paper. Calligraphic math
font (e.g.,V) denotes set, boldface uppercase letters (e.g., A) denote
matrices and boldface lowercase letters (e.g.,𝒘) denote vectors.

Signed Graph. A signed graph is denoted as G = (V, E+, E−),
where V = {𝑣1, 𝑣2, ..., 𝑣𝑛} represents the set of 𝑛 nodes while E+

and E− represent the set of positive and negative links respectively.
Signed Network Representation. Given a signed graph G =

(V, E+, E−), the aim of signed network representation is to learn
𝑑-dimensional representations Z ∈ R𝑛×𝑑 for the 𝑛 nodes in G.

Balance theory. Balance theory is a fundamental and indispens-
able signed social theory that originated and developed in social
psychology. In general, cycles consisting of an even number of
negative links are balanced cycles while those with an odd number
of negative links are unbalanced cycles. For example, the first two
cycles in Fig. 2 are balanced while the others are unbalanced. Bal-
ance theory implies that the friend of my friend is my friend and the
enemy of my enemy is my friend, which has been found to be widely
existing in signed graphs and thus has a vast range of applications
in signed network representation [6, 11–13]. In this paper, we turn

our attention to balanced cycles since they are more plausible and
prevalent than unbalanced ones [1, 9] in real-world signed graphs.

4 PROPOSED METHODOLOGY
In this section, we propose a novel graph contrastive representation
learning model - SGCL for signed graphs, which is illustrated in
Fig. 3.

4.1 Graph Augmentation
In order to reduce the harm of interaction noise to models, we
employ graph augmentations [49] to enhance the robustness and
generalization ability of the proposed model. Since balance the-
ory plays a significant role in analyzing the complex relations be-
tween positive and negative links, it is indispensable to capture
the invariant structures of balanced cycles when designing graph
augmentations specific to signed graphs. Concretely, through per-
turbing the structures of balanced cycles, some spurious balanced
cycles/relationships are eliminated while some potential balanced
cycles/relationships are discovered and exploited, which helps to
improve the generalization performance of the proposed model. As
a consequence, two approaches of graph augmentations are pro-
posed in the following, which perturb the existing balanced cycles
from different perspectives.

Connectivity Perturbation. Given the signed graph G, we
perturb the connectivity of G by randomly dropping and adding
links. Specifically, we firstly drop some links of G, where each link
is discarded with a probability 𝑟 . Supposing that 𝑝 positive links
and 𝑞 negative links are removed from G, we then generate 𝑝 + 𝑞
non-existing links randomly and add them into G, where 𝑝 links are
added as positive links and 𝑞 links are added as negative ones. This
approach supposes that the semantics of G has certain robustness
to the variances of balanced cycles affected by link connectivity.

Sign Perturbation. Different from the graph augmentation that
perturbs link connectivity, sign perturbation changes the sign of
links in G randomly. Particularly, a positive link is transformed
into a negative one with a probability 𝑟 while a negative link is
transformed into a positive one with the same probability similarly.
This approach assumes that perturbing balanced cycles by changing
link signs does not affect model predictions much.

To sum up, the two types of graph augmentations both leverage
the augmentation ratio 𝑟 to perturb existing balanced cycles and the
number of links remains unchanged after graph augmentations. In
our SGCL model, in each iteration, we apply either the connectivity
perturbation or sign perturbation to transform the original graph
into two different graph views, denoted as G̃1 = (V, Ẽ+

1 , Ẽ
−
1 ) and

G̃2 = (V, Ẽ+
2 , Ẽ

−
2 ).

4.2 Graph Encoder
After generating two graph views by graph augmentations, we
further utilize graph neural networks (GNNs) to learn node rep-
resentations on all views. In signed graphs, positive and negative
links have distinct semantic properties, where positive links reflect
closeness to friends and negative links imply hatred to enemies, mo-
tivating us to design two separate GNNs to aggregate positive and
negative links respectively, which also serves for the contrastive ob-
jective introduced in the next subsection. More specifically, we split
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Figure 3: The overall architecture of SGCL, which consists of three major components: (a) Graph Augmentation, (b) Graph
Encoder, (c) Model Training.

each graph view G̃𝑖 = (V, Ẽ+
𝑖
, Ẽ−
𝑖
) into two graphs containing only

positive links and only negative links, referred to as positive graph
G̃+
𝑖

= (V, Ẽ+
𝑖
) and negative graph G̃−

𝑖
= (V, Ẽ−

𝑖
) respectively.

Then a positive GNN is leveraged to learn node representations
from the positive graphs while a negative GNN is employed to
learn representations from the negative graphs, which are shared
across the positive and negative graphs of all views, respectively.
The learned representations from positive graphs are denoted as
consistent representations while the ones from negative graphs
are denoted as inconsistent representations.

In the following, we introduce the aggregation layer used in
positive and negative GNNs in detail. Since the contributions of
neighbors are different for each node, we utilize the attention mech-
anism to learn neighbors’ importance for each node during the
aggregation process. Concretely, for a given node 𝑣𝑖 and its neigh-
bor 𝑣 𝑗 in the positive/negative graph, we leverage the attentional
mechanism parametrized by a weight vector 𝒂+ ∈ R1×2𝑑𝑜𝑢𝑡 for the
positive GNN (or 𝒂− ∈ R1×2𝑑𝑜𝑢𝑡 for the negative GNN) and apply
the LeakyReLU nonlinearity (with negative input slope 𝛼 = 0.2) to
compute the attention coefficient 𝛼𝑖 𝑗 of node 𝑣 𝑗 to node 𝑣𝑖 , which
can be formulated as follows:

𝛼+𝑖 𝑗 =
exp(LeakyReLU(𝒂+ [𝒉+

𝑖
W+
𝑎 | |𝒉+𝑗W

+
𝑎 ]𝑇 ))∑

𝑡 ∈N+
𝑖
exp(LeakyReLU(𝒂+ [𝒉+

𝑖
W+
𝑎 | |𝒉+𝑡W+

𝑎 ]𝑇 ))
, (1)

𝛼−𝑖 𝑗 =
exp(LeakyReLU(𝒂− [𝒉−

𝑖
W−
𝑎 | |𝒉−𝑗W

−
𝑎 ]𝑇 ))∑

𝑡 ∈N−
𝑖
exp(LeakyReLU(𝒂− [𝒉−

𝑖
W−
𝑎 | |𝒉−𝑡 W−

𝑎 ]𝑇 ))
, (2)

where 𝑁 +
𝑖
and 𝑁−

𝑖
denote neighbors of node 𝑣𝑖 in the positive

graph and negative graph respectively, 𝒉+
𝑖
,𝒉−
𝑖

∈ R𝑑𝑖𝑛 represent
the input consistent and inconsistent representation of node 𝑣𝑖 ,

W+
𝑎 ,W−

𝑎 ∈ R𝑑𝑖𝑛×𝑑𝑜𝑢𝑡 are the weight matrices in the positive and
negative GNNs respectively, 𝑑𝑖𝑛 and 𝑑𝑜𝑢𝑡 denote the input and
output representation dimensions of the aggregation layer and we
set 𝑑𝑜𝑢𝑡 to be equal to 𝑑 in each aggregation layer. In addition, ·𝑇
denotes transposition and | | represents concatenation. Obviously,
the attention coefficient is normalized across all choices of node 𝑣 𝑗 .

After obtaining the normalized attention coefficients, we com-
pute the linear combinations of input node representations corre-
sponding to the coefficients and apply a nonlinearity to generate the
output representations for each node. Furthermore, the multi-head
attention mechanism [37] which learns𝐾 independent attention ag-
gregations are leveraged to make the learning process more stable,
i.e.,

𝒉+′𝑖 =

𝐾������
𝑘=1

𝜎 (
∑︁
𝑗 ∈𝑁 +

𝑖

𝛼
𝑘,+
𝑖 𝑗

𝒉+𝑗 W
𝑘,+
𝑏

), (3)

𝒉−′𝑖 =

𝐾������
𝑘=1

𝜎 (
∑︁
𝑗 ∈𝑁 −

𝑖

𝛼
𝑘,−
𝑖 𝑗

𝒉−𝑗 W
𝑘,−
𝑏

), (4)

where 𝒉+′
𝑖
,𝒉−′
𝑖

∈ R𝑑𝑜𝑢𝑡 represent the output consistent and incon-
sistent representations respectively, 𝛼𝑘,+

𝑖 𝑗
, 𝛼
𝑘,−
𝑖 𝑗

and W𝑘,+
𝑏
,W𝑘,−

𝑏
are

the normalized attention coefficients and the transformation matri-
ces for positive and negative GNNs in the 𝑘-th head, 𝜎 denotes the
nonlinear activation function such as ReLU.

Ultimately, the positive and negative GNNs are built by stacking
multiple aggregation layers proposed in Eq. 3- 4, which are shared
across all graph views, as shown in Fig. 3. Since representations
in different layers emphasize the connectivity of different order,
we concatenate representations of all layers to constitute the final
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node representations:

𝒛+𝑖 = [𝒉(0)+
𝑖

∥𝒉(1)+
𝑖

∥ · · · ∥𝒉(𝐿)+
𝑖

]W+
𝑐 , (5)

𝒛−𝑖 = [𝒉(0)−
𝑖

∥𝒉(1)−
𝑖

∥ · · · ∥𝒉(𝐿)−
𝑖

]W−
𝑐 , (6)

where 𝐿 denotes the layers of GNNs, 𝒉(𝑙)+
𝑖

and 𝒉(𝑙)−
𝑖

denotes the
consistent and inconsistent representation of node 𝑣𝑖 in the 𝑙-th
layer, W+

𝑐 ,W−
𝑐 ∈ R(𝐿𝑑+𝑑)×𝑑 denote the transformation matrices,

𝒛+
𝑖
, 𝒛−
𝑖
∈ R𝑑 denote the final consistent and inconsistent representa-

tion of 𝑣𝑖 respectively. Note that 𝒉
(0)+
𝑖

,𝒉(0)−
𝑖

are obtained by a linear
transformation of node attribute. As a consequence, the proposed
graph encoder finally generates two representations on each graph
view for node 𝑣𝑖 , denoted as 𝒛+

𝑖,𝑚
and 𝒛−

𝑖,𝑚
, where𝑚 represents the

𝑚-th view of augmented graphs. As a consequence, 𝒛+
𝑖,𝑚

and 𝒛−
𝑖,𝑚

convey the information of 𝑣𝑖 ’s friends (or neighbors connected with
positive links) and enemies (or neighbors connected with negative
links) in the𝑚-th graph view respectively.

4.3 Contrastive Objective
In this section, we form the contrastive objective by the inter-view
and intra-view contrastive learning, which distinguish positive
samples from negative samples based on augmented graphs and
signed structures respectively. Fig. 4 illustrates an example of inter-
view and intra-view contrastive learning.

4.3.1 Inter-view Contrastive Learning. In order to retain the infor-
mation consistency between different augmented graphs, SGCL
maximizes the agreements of representations between the same
node in different graph views while minimizes the representation
similarities between different nodes, which is a contrastive learn-
ing process between different nodes and thus is called inter-view
contrastive learning. Since SGCL splits each graph view into a
positive graph and a negative graph, we maximize the mutual infor-
mation between the learned consistent representations as well as
between the learned inconsistent representations across all views.

In the following, we firstly introduce the inter-view contrastive
objective for consistent representations. Concretely, given a mini-
batch B containing 𝐼 nodes, for a query consistent representation
𝒛+
𝑖,𝑚

, its inter-view positive samples are the consistent representa-
tions generated from the same node in other graph views, and its
inter-view negative samples are the ones generated from different
nodes in other graph views. Inspired by the InfoNCE loss [7, 29, 32],
the inter-view consistent contrastive loss is defined as follows:

L𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑠 = −1
𝐼

𝐼∑︁
𝑖=1

log
exp(sim(𝒛+

𝑖,𝑚
, 𝒛+
𝑖,𝑚′)/𝜏)∑𝐼

𝑗=1, 𝑗≠𝑖 exp(sim(𝒛+
𝑖,𝑚
, 𝒛+
𝑗,𝑚′)/𝜏)

(7)

where 𝒛+
𝑖,𝑚

represents the consistent representation of node 𝑣𝑖 in
the𝑚-th augmented positive graph view, sim(𝒛+

𝑖,𝑚
, 𝒛+
𝑖,𝑚′) represents

the cosine similarity function between the two representations and
𝜏 denotes the preset temperature parameter.

Similarly, for a query inconsistent representation 𝒛−
𝑖,𝑚

, its inter-
view positive samples are the inconsistent representations gener-
ated from the same node in other graph views while its inter-view
negative samples are the ones generated from different nodes in
other graph views. As a consequence, the inter-view inconsistent

(a) Inter-view Contrastive Learning

(b) Intra-view Contrastive Learning

Figure 4: Illustrations of inter-view and intra-view con-
trastive learning.

contrastive loss is defined as:

L𝑖𝑛𝑡𝑒𝑟𝑛𝑒𝑔 = −1
𝐼

𝐼∑︁
𝑖=1

log
exp(sim(𝒛−

𝑖,𝑚
, 𝒛−
𝑖,𝑚′)/𝜏)∑𝐼

𝑗=1, 𝑗≠𝑖 exp(sim(𝒛−
𝑖,𝑚
, 𝒛−
𝑗,𝑚′)/𝜏)

(8)

To sum up, we maximize the similarities of representations gen-
erated from the same node and minimize the similarities of rep-
resentations generated from different nodes on both augmented
positive and negative graphs. The inter-view contrastive loss is
formed as:

L𝑖𝑛𝑡𝑒𝑟 = L𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑠 + L𝑖𝑛𝑡𝑒𝑟𝑛𝑒𝑔 (9)

4.3.2 Intra-view Contrastive Learning. Because the consistent rep-
resentation 𝒛+

𝑖,𝑚
learned from positive graph implies the informa-

tion of 𝑣𝑖 ’s friends (or neighbors with positive links) while the
inconsistent representation 𝒛−

𝑖,𝑚
learned from negative graph con-

veys the information of 𝑣𝑖 ’s enemies (or neighbors with negative
links), SGCL performs contrastive learning on signed structures by
constraining the ultimate representation of each node close to its
consistent representations and far from its inconsistent represen-
tations, which is a contrastive learning process on the same node
and thus is called intra-view contrastive learning.

Specifically, given a minibatch B containing 𝐼 nodes, for each
node 𝑣𝑖 , we generate the representation of 𝑣𝑖 by concatenating
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𝒛+
𝑖,1, 𝒛

+
𝑖,2, 𝒛

−
𝑖,1, 𝒛

−
𝑖,2 since all theses representations contain useful in-

formation of diverse aspects, which is formulated as:

𝒛𝑖 = 𝑔(𝒛+𝑖,1∥𝒛
+
𝑖,2∥𝒛

−
𝑖,1∥𝒛

−
𝑖,2), (10)

where 𝑔 is a 2-layer MLP and 𝒛𝑖 ∈ R𝑑 is the final representation of
node 𝑣𝑖 . Hence, for the query node representation 𝒛𝑖 , we regard the
consistent representations of 𝑣𝑖 in all graph views as the intra-view
positive samples and the inconsistent representations in all graph
views as the intra-view negative samples. In this way, we can make
nodes more similar to neighbors connected with positive links and
dissimilar to those with negative links. Formally, the intra-view
contrastive objective is defined in the following:

L𝑖𝑛𝑡𝑟𝑎 = −1
𝐼

𝐼∑︁
𝑖=1

log
∑𝑀
𝑚=1 exp(sim(𝒛𝑖 , 𝒛+𝑖,𝑚)/𝜏)∑𝑀
𝑚=1 exp(sim(𝒛𝑖 , 𝒛−𝑖,𝑚)/𝜏)

, (11)

where𝑀 denotes the number of graph views, which equals to 2 in
this paper.

4.3.3 Combined Contrastive Learning. For a given minibatch B
containing 𝐼 nodes, we perform both inter-view and intra-view
contrastive learning, which generates the combined contrastive
objective as follows:

L𝐶𝐿 = (1 − 𝛼) · L𝑖𝑛𝑡𝑒𝑟 + 𝛼 · L𝑖𝑛𝑡𝑟𝑎, (12)

where 𝛼 is the weight coefficient that controls the significance
between the two losses.

4.4 Model Training
In this paper, we focus on the most fundamental signed network
analysis task, namely link sign prediction [23, 33] that predicts
whether the link is positive or negative, whose training data is the
existing signed links in the graphs, which is the same as the training
data of our proposed contrastive learning. Hence, we propose to
train the contrastive learning task and the target link sign predic-
tion task jointly, where contrastive learning can be viewed as the
regularization of the target task.

Specifically, after generating the final representations for all
nodes by Eq. 10, we utilize a 2-layer MLP 𝑓 to estimate the sign
scores between two nodes:

𝑦𝑖, 𝑗 = 𝑓 (𝒛𝑖 ∥𝒛 𝑗 ), (13)

where 𝑦𝑖, 𝑗 indicates the predicted score of the link sign between
node 𝑣𝑖 and 𝑣 𝑗 . The loss function of the link sign prediction is
formulated based on the cross entropy:

L𝑙𝑎𝑏𝑒𝑙 = −
∑︁

(𝑖, 𝑗) ∈Ω+
𝑦𝑖, 𝑗 log𝜎𝑎 (𝑦𝑖, 𝑗 )

−
∑︁

(𝑖′, 𝑗 ′) ∈Ω−
(1 − 𝑦𝑖′, 𝑗 ′) log(1 − 𝜎𝑎 (𝑦𝑖′, 𝑗 ′)),

(14)

where Ω+ denotes the training positive node pairs and Ω− denotes
the training negative node pairs, 𝜎𝑎 (·) represents the sigmoid func-
tion, 𝑦𝑖, 𝑗 represent the sign ground truth, which equals to 1 when
the sign is positive and equals to 0 when the sign is negative.

Ultimately, SGCL is trained by the joint loss of link sign predic-
tion and the combined contrastive learning, which is formulated
as:

L = L𝑙𝑎𝑏𝑒𝑙 + 𝛽 · L𝐶𝐿, (15)

Table 1: Descriptive Statistics of four datasets.

Dataset # nodes # pos links # neg links % pos ratio
Bitcoin-Alpha 3783 22,650 1,536 0.9365
Bitcoin-OTC 5881 32,029 3,563 0.8999
Knives Out 428,803 902,006 1,226,409 0.4238
Tom & Jerry 413,410 898,008 298,344 0.7506

where 𝛽 is the weight parameter that balances the magnitude and
controls the significance between the two tasks. Note that during
testing, we feed the original graph instead of the augmented ones
into the graph encoder, i.e., the augmented ratio 𝑟 = 0. The detailed
learning algorithm is summarized in Algorithm 1.

Algorithm 1 SGCL Training Algorithm
1: for 𝑒𝑝𝑜𝑐ℎ = 0, 1, · · · do
2: // Graph Augmentations
3: Generate two graph views G̃1 and G̃2 by perturbing G
4: // Graph Encoders
5: Split G̃1, G̃2 into G̃+

1 , G̃−
1 and G̃+

2 , G̃−
2 respectively

6: Obtain consistent representations of G̃+
1 , G̃+

2 via Eq. (1), (3), (5)
7: Obtain inconsistent representations of G̃−

1 , G̃−
2 via Eq. (2), (4), (6)

8: Obtain the ultimate representations Z via Eq. (10)
9: // Contrastive Learning
10: Compute inter-view contrastive loss L𝑖𝑛𝑡𝑒𝑟 via Eq. (7), (8), (9)
11: Compute intra-view contrastive loss L𝑖𝑛𝑡𝑟𝑎 via Eq. (11)
12: Compute the combined contrastive objective L𝐶𝐿 via Eq. (12)
13: // Model Training
14: Compute the loss of sign link prediction task via Eq. (14)
15: Compute the whole objective function L via Eq. (15) and update

model parameters 𝜃 by 𝜕L
𝜕𝜃

16: end for
17: return node representations Z

5 EXPERIMENTS
In this section, we conduct link sign prediction to evaluate the
performance of SGCL and compare it with state-of-the-art methods
in signed network representation and graph contrastive learning.

5.1 Datasets
Experiments are conducted on two real-world social datasets (i.e.,
Bitcoin-Alpha, Bitcoin-OTC) and two online game datasets (i.e.,
Knives Out, Tom and Jerry: Chase) to evaluate the effectiveness
of the proposed model. The descriptive statistics of these datasets
are summarized in Table 1.

5.1.1 Social Datasets. Bitcoin-Alpha and Bitcoin-OTC [21] are two
public datasets collected from Bitcoin trading platforms BitcoinAl-
pha1 and BitcoinOTC2 respectively. Due to the anonymity of these
trading platforms, users can label other users as trust (positive) or
distrust (negative) users to prevent transactions with fraudulent
and risky users. In the experiments, we randomly select 80% links
as training set and the remaining 20% as testing set. Since these
datasets have no attributes, we randomly generate a 64-dimensional
vector for each node as the initial attribute.

1https://www.btc-alpha.com/
2https://www.bitcoin-otc.com/
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5.1.2 Game Datasets. Knives Out3 and Tom and Jerry: Chase4

(abbreviated as Tom & Jerry) are two datasets collected from on-
line games released by NetEase Games, a leading provider of self-
developed games toworld-wide users. All data has been anonymized
to protect the privacy of all users, and the desensitized data is ir-
reversible to restore the user profiles. For Knives Out, we extract
user interactions from April 12th, 2020 to May 12th, 2020 as train-
ing set and those in the following week from May 13th, 2020 as
testing set, where the positive links are interactions of Chat and
Gift, and the negative links are interactions of Report. As for Tom
& Jerry, user interactions from June 1st, 2020 to June 8th, 2020 are
extracted as training set while those in the following day from June
9th, 2020 are collected as testing set, where interactions of Chat
and Friend Request constitute the positive links and interactions of
Report constitute the negative links. The attributes on these datasets
contain user profiles, social activities and competitive performances
in games, whose dimension is 47 and 73 for Knives Out and Tom &
Jerry, respectively.

5.2 Baselines and Experiment Setting
To validate the effectiveness of SGCL, we compare it with several
state-of-the-art methods in the fields of graph neural networks (i.e.,
GCN and GAT), signed network representation (i.e., SiNE, SGCN
and ROSE) and graph contrastive learning (i.e., DGI, GraphCL and
GRACE).

• GCN [19] utilizes an efficient layer-wise propagation rule
based on a first-order approximation of spectral convolutions
on graphs.

• GAT [38] introduces an attention-based architecture to pro-
cess the graph-structured data, which computes the hidden
representation of each node in the graph by aggregating
neighbors, following a self-attention strategy.

• SiNE [43] is a deep learning framework for signed network
representation. The design of the objective function follows
the guidance of balance theory, which expects nodes to be
more similar to their friends than their foes.

• SGCN [6] bridges the gap between unsignedGCN and signed
graph analysis. It makes an effort to design a new informa-
tion aggregator based on balance theory and generalizes
GCN to signed graphs.

• ROSE [15] introduces a novel graph transformation based
framework, which firstly transforms the original signed
graph to an unsigned bipartite graph and then utilizes un-
signed representation learningmethods (e.g., graph attention
networks) to obtain node representations.

• DGI [39] maximizes local-global mutual information be-
tween substructure representations and graph-level repre-
sentations to generate node representations.

• GraphCL [47] proposes various types of graph augmenta-
tions for unsigned graphs and generates representations by
maximizing feature consistency under different augmented
graphs, where different graph augmentations help learn dif-
ferent invariant properties of node representations. In this

3https://hy.163.com/index.html. The data is extracted from game of PC version
and the users are from Chinese mainland.

4https://tom.163.com/index.html. The users are from Chinese mainland.

paper, we adopt node dropping as the graph augmentation
of GraphCL.

• GRACE [51] leverages a contrastive objective at the node
level. Two graph views are generated by composite graph
augmentations, which firstly remove edges and then mask
node features randomly. Ultimately, node representations
are learned by maximizing the agreement of node represen-
tations in these two views.

We use the authors’ released codes for SiNE5, DGI6, GraphCL7,
GRACE8 and leverage the code from GitHub for SGCN9. For GCN,
GAT and ROSE, we reproduce their codes based on their papers.
We follow the authors’ suggested hyperparameter settings and set
the embedding dimension to be 128 for all methods to achieve a
fair comparison. For graph contrastive learning methods, we follow
the papers’ guidance and train their models with fine-tune strategy
[10, 16]. Specifically, these methods adopt GCN as encoders and
firstly train encoders with contrastive loss, after which the encoders
initialized by the pre-trained parameters are trained together with
the 2-layer MLP classifier on the link sign prediction task.

The proposed model SGCL is implemented by PyTorch [30] and
DGL [41] with the Adam [18] optimizer, whose learning rate is
set to be 0.01. We stack 2 layers for both positive and negative
GNNs to generate node representations. The dimensions of hidden
and output representations are both 128, with the number of at-
tention heads 𝐾 and temperature parameter 𝜏 being 8 and 0.05 on
all datasets. The value of 𝛽 and augmentation ratio 𝑟 is set to be
0.0001, 0.1 for Bitcoin-Alpha and Bitcoin-OTC while is 0.01, 0.3 for
Knives Out and 0.01, 0.4 for Tom & Jerry. As for the parameter of 𝛼 ,
it is set to be 0.2 for Bitcoin-OTC and Tom & Jerry while is 0.8 for
the other two datasets.

5.3 Experiment Results
In this subsection, SGCL-comp represents the model whose aug-
mented graphs are generated by connectivity perturbation and sign
perturbation respectively. SGCL-conn denotes the model that only
utilizes connectivity perturbation as graph augmentations while
SGCL-sign denotes the one that only utilizes sign perturbation
to generate graph views. In general, SGCL-comp, SGCL-conn and
SGCL-sign are collectively referred to as SGCL. In the experiments,
we adopt Area Under Curve (AUC), Micro-F1 Binary-F1, and Macro-
F1 scores to evaluate the performances of all models, where higher
values imply better performances.We repeat all experiments 5 times
and report the average results in Table 2, where the highest values
are emphasized in bold and the second ones are marked with under-
lines. The last column indicates the percentage of improvements
gained by the best performance of our proposed model compared
to the best baseline. We summarize some major observations as
follows:

• SGCN and ROSE which leverage graph neural networks as
graph encoders outperforms GCN and GAT, verifying the
benefits of considering the complex relations and diverse
semantics between positive and negative links of signed

5https://faculty.ist.psu.edu/szw494/codes/SiNE.zip
6https://github.com/PetarV-/DGI
7https://github.com/Shen-Lab/GraphCL
8https://github.com/CRIPAC-DIG/GRACE
9https://github.com/benedekrozemberczki/SGCN
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Table 2: The results of link sign prediction on real-world social datasets and online game datasets.

GNNs Signed Network Contrastive Learning Proposed Model
Dataset Metric GCN GAT SiNE SGCN ROSE DGI GraphCL GRACE SGCL-comp SGCL-conn SGCL-sign Impro

Bitcoin-Alpha

Micro-F1 0.7582 0.7767 0.9439 0.9204 0.9387 0.9404 0.9428 0.9436 0.9523 0.9501 0.9516 0.89%
Binary-F1 0.8517 0.8664 0.9707 0.9574 0.9674 0.9687 0.9697 0.9701 0.9748 0.9736 0.9745 0.42%
Macro-F1 0.5645 0.5857 0.6604 0.6622 0.7309 0.6680 0.7294 0.7398 0.7622 0.7577 0.7578 3.03%
AUC 0.8217 0.8519 0.8777 0.8261 0.8845 0.8334 0.8686 0.8483 0.9104 0.9054 0.9090 2.93%

Bitcoin-OTC

Micro-F1 0.7781 0.8296 0.9136 0.9053 0.9225 0.9131 0.9189 0.9234 0.9399 0.9397 0.9427 2.09%
Binary-F1 0.8618 0.8983 0.9535 0.9477 0.9575 0.9519 0.9547 0.9574 0.9670 0.9670 0.9686 1.16%
Macro-F1 0.6415 0.6836 0.6762 0.7188 0.7583 0.7521 0.7818 0.7860 0.8139 0.8109 0.8188 4.17%
AUC 0.8648 0.8708 0.8553 0.8760 0.8870 0.8713 0.8836 0.8760 0.9117 0.9053 0.9159 3.26%

Knives Out

Micro-F1 0.7073 0.7197 0.7295 0.7697 0.7910 0.7473 0.7537 0.6971 0.7992 0.7958 0.8052 1.80%
Binary-F1 0.6541 0.6706 0.6970 0.7619 0.7677 0.6850 0.6927 0.5662 0.7941 0.7931 0.7969 3.80%
Macro-F1 0.7001 0.7133 0.7264 0.7687 0.7886 0.7370 0.7436 0.6667 0.7978 0.7958 0.8049 2.07%
AUC 0.7713 0.7847 0.7983 0.8442 0.8680 0.8498 0.8565 0.8116 0.8785 0.8737 0.8811 1.51%

Tom & Jerry

Micro-F1 0.5999 0.6238 0.7703 0.6919 0.8007 0.7591 0.7678 0.7281 0.7984 0.7927 0.8073 0.82%
Binary-F1 0.6822 0.7108 0.8523 0.7579 0.8675 0.8376 0.8454 0.8169 0.8673 0.8647 0.8728 0.61%
Macro-F1 0.5702 0.5861 0.6679 0.6663 0.7327 0.6844 0.6893 0.6444 0.7233 0.7099 0.7379 0.71%
AUC 0.6565 0.6732 0.7300 0.7973 0.8239 0.7692 0.7755 0.7280 0.8189 0.8042 0.8352 1.37%

graphs. In addition, DGI, GraphCL, GRACE perform better
than GCN and GAT, which demonstrates the effectiveness of
graph contrastive learning. Combining these two strengths,
our proposed model consistently achieves the best perfor-
mances compared with state-of-the-art methods, which of-
fers significant improvements of 1.37%-3.26% on AUC in the
four datasets and especially gains 1.16%-4.17% improvements
on Bitcoin-OTC and Knives Out datasets for all indicators.

• SGCL-conn and SGCL-sign show superiority over signed net-
work representation methods, i.e., SiNE, SGCN and ROSE,
strongly proving the usefulness of graph contrastive learn-
ing. To be more specific, graph contrastive learning in our
model employs graph augmentations specifically designed
for signed graphs and maximizes the agreement between
augmented graphs, which help SGCL generate more invari-
ant and robust representations, thus leading to better perfor-
mances on downstream tasks.

• Our proposed model achieves considerable improvements
compared to graph contrastive learning methods, while in
particular SGCL-sign performs the best almost on all datasets.
On the one hand, SGCL adopts separate encoders to aggre-
gate positive and negative links respectively rather than mix-
ing all types of links, which distinguishes different seman-
tics between them. On the other hand, our proposed models
employ graph augmentations based on balance theory (i.e.,
connectivity and sign perturbation), which are specifically
designed for signed graphs and thus boost the performances.

• It can be observed that SGCL-sign consistently outperforms
SGCL-conn, proving that the semantics of signed graphs
are more sensitive to link connectivities than link signs,
and perturbing balanced cycles by randomly dropping and
adding links hurt the semantics more, thus resulting in worse
performances on downstream tasks. Besides, there exists
a surprising phenomenon that SGCL-comp which utilizes
both connectivity and sign perturbation does not usually
lead to the best performance compared with SGCL-sign and

SGCL-conn. We argue that connectivity perturbation is not
as effective as sign perturbation and thus SGCL-comp which
composes these two augmentations performs better than
SGCL-conn while performs worse than SGCL-sign in most
cases.

Table 3: The AUC performances with SGCL and its variants.

Models Bitcoin
Alpha

Bitcoin
OTC Knives Out Tom & Jerry

SGCL 0.9090 0.9159 0.8811 0.8352
SGCL𝑤/𝑜 𝑎𝑢𝑔 0.8606 0.8746 0.8535 0.6359
SGCL𝑤/𝑜 𝐺𝐶𝐿 0.8710 0.8715 0.8403 0.6037
SGCL𝑤/𝑜 𝑖𝑛𝑡𝑒𝑟 0.9029 0.9116 0.8760 0.8292
SGCL𝑤/𝑜 𝑖𝑛𝑡𝑟𝑎 0.9051 0.9083 0.8769 0.8269

5.4 Ablation Study
We conduct ablation study to investigate the effectiveness of differ-
ent components in our proposed model, where we choose sign per-
turbation as the graph augmentation in this subsection to analyze
performances. Concretely, we compare SGCL with its four vari-
ants: SGCL𝑤/𝑜 𝐺𝐶𝐿 , SGCL𝑤/𝑜 𝑎𝑢𝑔 , SGCL𝑤/𝑜 𝑖𝑛𝑡𝑒𝑟 , SGCL𝑤/𝑜 𝑖𝑛𝑡𝑟𝑎 ,
which are defined as follows:

• SGCL𝑤/𝑜 𝑎𝑢𝑔 : The graph augmentation in contrastive learn-
ing is removed. In this variant, original graphs instead of
augmented graphs are exploited during training, i.e., 𝑟 = 0.

• SGCL𝑤/𝑜 𝐺𝐶𝐿 : This variant generates node representations
without graph contrastive learning, where the original graphs
are fed into encoders and the objective function only takes
link sign prediction loss into considerations, i.e., 𝑟 = 0 and
𝛽 = 0.

• SGCL𝑤/𝑜 𝑖𝑛𝑡𝑒𝑟 : This variant ignores the inter-view contrastive
loss and only performs intra-view contrastive learning, which
learns discriminative representations by the contrast of signed
structures, i.e., 𝛼 = 1.
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Figure 5: Parameter sensitivity of SGCL with regard to 𝛼 , 𝛽 , 𝑟 .

• SGCL𝑤/𝑜 𝑖𝑛𝑡𝑟𝑎 : Contrary to the previous variant, this variant
ignores the intra-view contrastive loss and only performs
inter-view contrastive learning to generate node representa-
tions from the contrast of augmented graphs, i.e. 𝛼 = 0.

The AUC comparisons of SGCL with the four variants are sum-
marized in Table 3. From this table, we can conclude that:

• SGCL𝑤/𝑜 𝑎𝑢𝑔 and SGCL𝑤/𝑜 𝐺𝐶𝐿 perform much worse than
SGCL, which demonstrates the effectiveness of graph con-
trastive learning component in our model.

• Comparing SGCL with SGCL𝑤/𝑜 𝑖𝑛𝑡𝑒𝑟 and SGCL𝑤/𝑜 𝑖𝑛𝑡𝑟𝑎 ,
we can see that combining inter-view and intra-view con-
trastive losses can boost the performance of SGCL, verifying
that our proposed model gains improvements from both
contrasts of augmented graphs and signed structures.

5.5 Parameters Analysis
In this section, we investigate the sensitivity of three major hyper-
parameters in our proposed model: 𝛼 that balances inter-view and
intra-view contrastive losses, 𝛽 that balances the loss of graph con-
trastive learning and link sign prediction, and augmentation ratio
𝑟 . We fix other hyperparameters when evaluating each of them and
utilize sign perturbation to generate augmented graphs as the same
as the previous subsection. The detailed AUC performances are
illustrated in Fig. 5 and observations are summarized as follows:

• Revealed by Fig. 5(a), the model leveraging the combina-
tion of inter-view and intra-view contrastive losses achieves
better performance than those using either inter-view or
intra-view contrastive loss, which is consistent with the pre-
vious analysis in the ablation study.

• From Fig. 5(b), the performance rises with the value of 𝛽
increases, verifying that graph contrastive learning helps
learn higher-quality representations in a more invariant
and robust feature-space and thus results in better perfor-
mances on downstream tasks. Nevertheless, performances
drop sharply when 𝛽 becomes too large, especially on Bitcoin-
Alpha dataset, which is reasonable since larger 𝛽 forces the
model to pay too much attention to contrastive learning

rather than the sign link prediction task, thus leading to
unwanted results.

• The optimal augmented ratio 𝑟 falls on 0.2 for social datasets,
which is smaller than those for game datasets falling on 0.3-
0.4. On the one hand, we argue that online game datasets con-
tain much more interaction noise than public social datasets,
thus requiring stronger augmentations for graph contrastive
learning to obtain invariant representations. On the other
hand, since game datasets own attributes information while
social datasets do not, game datasets may have a better abil-
ity of suffering larger graph perturbations. Last but not least,
the performance decreases when the augmentation ratio be-
comes too large, demonstrating that over-perturbation leads
to the loss of information of the original graphs.

6 CONCLUSION
In this paper, we propose a novel signed graph contrastive repre-
sentation learning model - SGCL, which is the first work to em-
ploy graph contrastive learning on signed graphs to the best of
our knowledge. Concretely, SGCL designs and performs two types
of graph augmentations specifically for signed graphs, i.e., con-
nectivity perturbation and sign perturbation, which help capture
more invariant and robust representations based on balance the-
ory. Moreover, we exploit inter-view and intra-view contrastive
learning to combine the contrasts of augmented graphs and signed
structures into a coherent model. The conducted experiments on
two real-world social graphs and two online game graphs suggest
that SGCL consistently outperforms state-of-the-art methods across
all datasets, demonstrating the effectiveness of our proposed model.

7 ACKNOWLEDGMENTS
The research is supported by the Key-Area Research and Devel-
opment Program of Guangdong Province (2020B010165003), the
National Natural Science Foundation of China (62176269, 11801595),
the Guangdong Basic andApplied Basic Research Foundation (2019A
1515011043). This work is also supported by the UX Center, Netease
Games.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1679



REFERENCES
[1] Dorwin Cartwright and Frank Harary. 1956. Structural balance: a generalization

of Heider’s theory. Psychological review 63, 5 (1956), 277.
[2] Liang Chen, Yuanzhen Xie, Zibin Zheng, Huayou Zheng, and Jingdun Xie. 2020.

Friend Recommendation Based on Multi-Social Graph Convolutional Network.
IEEE Access 8 (2020), 43618–43629.

[3] Yiqi Chen, Tieyun Qian, Huan Liu, and Ke Sun. 2018. " Bridge" Enhanced Signed
Directed Network Embedding. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management. 773–782.

[4] Yiqi Chen, Tieyun Qian, Ming Zhong, and Xuhui Li. 2018. BASSI: Balance and
Status Combined Signed Network Embedding. In International Conference on
Database Systems for Advanced Applications. Springer, 55–63.

[5] Tyler Derr. 2020. Network analysis with negative links. In Proceedings of the 13th
International Conference on Web Search and Data Mining. 917–918.

[6] Tyler Derr, Yao Ma, and Jiliang Tang. 2018. Signed graph convolutional networks.
In 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 929–934.

[7] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation:
A new estimation principle for unnormalized statistical models. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics.
JMLR Workshop and Conference Proceedings, 297–304.

[8] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view rep-
resentation learning on graphs. In International Conference on Machine Learning.
PMLR, 4116–4126.

[9] Fritz Heider. 1946. Attitudes and cognitive organization. The Journal of psychology
21, 1 (1946), 107–112.

[10] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2019. Strategies for pre-training graph neural networks. arXiv
preprint arXiv:1905.12265 (2019).

[11] Junjie Huang, Huawei Shen, Liang Hou, and Xueqi Cheng. 2019. Signed graph
attention networks. In International Conference on Artificial Neural Networks.
Springer, 566–577.

[12] Junjie Huang, Huawei Shen, Liang Hou, and Xueqi Cheng. 2021. SDGNN:
Learning Node Representation for Signed Directed Networks. arXiv preprint
arXiv:2101.02390 (2021).

[13] Mohammad Raihanul Islam, B Aditya Prakash, and Naren Ramakrishnan. 2018.
Signet: Scalable embeddings for signed networks. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer, 157–169.

[14] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Baner-
jee, and Fillia Makedon. 2021. A survey on contrastive self-supervised learning.
Technologies 9, 1 (2021), 2.

[15] Amin Javari, Tyler Derr, Pouya Esmailian, Jiliang Tang, and Kevin Chen-Chuan
Chang. 2020. Rose: Role-based signed network embedding. In Proceedings of The
Web Conference 2020. 2782–2788.

[16] Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, SuhangWang, Zitao Liu, and Jiliang
Tang. 2020. Self-supervised learning on graphs: Deep insights and new direction.
arXiv preprint arXiv:2006.10141 (2020).

[17] Junghwan Kim, Haekyu Park, Ji-Eun Lee, and U Kang. 2018. Side: representation
learning in signed directed networks. In Proceedings of the 2018 World Wide Web
Conference. 509–518.

[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[19] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[20] Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. 2018. Com-
munity interaction and conflict on the web. In Proceedings of the 2018 world wide
web conference. 933–943.

[21] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos.
2016. Edge weight prediction in weighted signed networks. In 2016 IEEE 16th
International Conference on Data Mining (ICDM). IEEE, 221–230.

[22] Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. 2020. Contrastive repre-
sentation learning: A framework and review. IEEE Access (2020).

[23] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting pos-
itive and negative links in online social networks. In Proceedings of the 19th
international conference on World wide web. 641–650.

[24] Yu Li, Yuan Tian, Jiawei Zhang, and Yi Chang. 2020. Learning signed network
embedding via graph attention. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 4772–4779.

[25] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Zhaoyu Wang, Li Mian, Jing Zhang, and Jie
Tang. 2020. Self-supervised learning: Generative or contrastive. arXiv preprint
arXiv:2006.08218 1, 2 (2020).

[26] Yang Liu, Chen Liang, Xiangnan He, Jiaying Peng, Zibin Zheng, and Jie Tang.
2020. Modelling High-Order Social Relations for Item Recommendation. IEEE
Transactions on Knowledge and Data Engineering (2020).

[27] Silviu Maniu, Bogdan Cautis, and Talel Abdessalem. 2011. Building a signed
network from interactions inWikipedia. InDatabases and Social Networks. 19–24.

[28] Alexandru Mara, Yoosof Mashayekhi, Jefrey Lijffijt, and Tijl De Bie. 2020. CSNE:
Conditional Signed Network Embedding. In Proceedings of the 29th ACM Interna-
tional Conference on Information & Knowledge Management. 1105–1114.

[29] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703 (2019).

[31] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph
neural network pre-training. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 1150–1160.

[32] Kihyuk Sohn. 2016. Improved deep metric learning with multi-class n-pair loss
objective. In Proceedings of the 30th International Conference on Neural Information
Processing Systems. 1857–1865.

[33] Dongjin Song and David A Meyer. 2015. Link sign prediction and ranking in
signed directed social networks. Social network analysis and mining 5, 1 (2015),
1–14.

[34] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2019. Infograph: Un-
supervised and semi-supervised graph-level representation learning via mutual
information maximization. arXiv preprint arXiv:1908.01000 (2019).

[35] Jiliang Tang, Yi Chang, Charu Aggarwal, and Huan Liu. 2016. A survey of signed
network mining in social media. ACM Computing Surveys (CSUR) 49, 3 (2016),
1–37.

[36] Jiliang Tang, Xia Hu, and Huan Liu. 2014. Is distrust the negation of trust? The
value of distrust in social media. In Proceedings of the 25th ACM conference on
Hypertext and social media. 148–157.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762 (2017).

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[39] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2018. Deep graph infomax. arXiv preprint arXiv:1809.10341
(2018).

[40] Hongwei Wang, Fuzheng Zhang, Min Hou, Xing Xie, Minyi Guo, and Qi Liu. 2018.
Shine: Signed heterogeneous information network embedding for sentiment link
prediction. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining. 592–600.

[41] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019).

[42] Suhang Wang, Charu Aggarwal, Jiliang Tang, and Huan Liu. 2017. Attributed
signed network embedding. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management. 137–146.

[43] Suhang Wang, Jiliang Tang, Charu Aggarwal, Yi Chang, and Huan Liu. 2017.
Signed network embedding in social media. In Proceedings of the 2017 SIAM
international conference on data mining. SIAM, 327–335.

[44] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems (2020).

[45] Fenfang Xie, Angyu Zheng, Liang Chen, and Zibin Zheng. 2021. Attentive
Meta-graph Embedding for item Recommendation in heterogeneous information
networks. Knowledge-Based Systems 211 (2021), 106524.

[46] Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. 2021.
Self-supervised learning of graph neural networks: A unified review. arXiv
preprint arXiv:2102.10757 (2021).

[47] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
Neural Information Processing Systems 33 (2020).

[48] Shuhan Yuan, XintaoWu, and Yang Xiang. 2017. SNE: signed network embedding.
In Pacific-Asia conference on knowledge discovery and data mining. Springer, 183–
195.

[49] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil
Shah. 2020. Data Augmentation for Graph Neural Networks. arXiv preprint
arXiv:2006.06830 (2020).

[50] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81.

[51] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

[52] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Graph Contrastive Learning with Adaptive Augmentation. arXiv preprint
arXiv:2010.14945 (2020).

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1680


	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Contrastive Learning
	2.2 Signed Network Representation

	3 Preliminary
	4 Proposed Methodology
	4.1 Graph Augmentation
	4.2 Graph Encoder
	4.3 Contrastive Objective
	4.4 Model Training

	5 Experiments
	5.1 Datasets
	5.2 Baselines and Experiment Setting
	5.3 Experiment Results
	5.4 Ablation Study
	5.5 Parameters Analysis

	6 Conclusion
	7 Acknowledgments
	References



